Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Ecancermedicalscience ; 17: 1582, 2023.
Article En | MEDLINE | ID: mdl-37533941

99mTc-EDDA/HYNIC-TOC is an easily available and cheaper radionuclide that could be used for somatostatin-receptor-based imaging of neuroendocrine tumours (NETs). We aimed to evaluate the diagnostic performance of 99mTc-EDDA/HYNIC-TOC compared to111In-DTPA-octreotide in patients (pts) with NETs. We performed a prospective diagnostic study including pts with biopsy-confirmed NET and at least one visible lesion at conventional imaging. Two independent nuclear medicine physicians evaluated pts who underwent 99mTc and 111In scans and images. The primary outcome was comparative diagnostic accuracy of 99mTc and 111In. Secondary outcomes include safety. Nine pts were included and performed 14 paired scans. Overall, 126 lesions were identified. 99mTc demonstrated superior sensitivity both when all images were analysed (93.7, 95% CI 88.1% - 96.8% versus 74.8%, 95% CI 66.6 - 81.6%, p < 0.001) and when liver-specific images were analysed (97.8%, 95% CI 92.7% - 99.5% versus 85.1%, 95% CI 76.6% - 91.0%, p < 0.001). 99mTc was also associated with a lower negative likelihood ratio (LR) (0.002, 95% CI 0.009 - 0.1 versus 0.19, 95% CI 0.12 - 0.42, p = 0.009) when evaluating hepatic lesions. Adverse events happened in 3 pts after 111In and in 2 pts after 99mTc, all grade 1. The 99mTc demonstrated a higher sensitivity overall and a better negative LR in liver-specific images compared to 111In in pts with NETs. Our findings suggest that 99mTc is an alternative to 111In and is especially useful in ruling out liver metastases. NCT02691078.

2.
Eur J Nucl Med Mol Imaging ; 49(7): 2251-2264, 2022 06.
Article En | MEDLINE | ID: mdl-35122511

PURPOSE: Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an anti-psychotic drug. METHODS: Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg-1) for 6 weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake). RESULTS: CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake. CONCLUSION: This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism-mimicking the hypometabolic signature seen in people developing dementia-and adds further evidence that astrocytes are key contributors of the FDG-PET signal.


Astrocytes , Clozapine , Animals , Clozapine/metabolism , Clozapine/pharmacology , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Male , Positron-Emission Tomography , Rats , Rats, Wistar
3.
Neurotox Res ; 39(6): 1830-1845, 2021 Dec.
Article En | MEDLINE | ID: mdl-34797528

Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.


Anxiety/chemically induced , Glucose/metabolism , Methylphenidate/pharmacology , Prefrontal Cortex/drug effects , Animals , Anxiety/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Homeostasis/drug effects , Male , Metabolic Networks and Pathways/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar
4.
Am J Physiol Endocrinol Metab ; 319(5): E877-E892, 2020 11 01.
Article En | MEDLINE | ID: mdl-32893672

Free fatty acid (FFA) receptors FFA1 and FFA4 are omega-3 molecular targets in metabolic diseases; however, their function in cancer cachexia remains unraveled. We assessed the role of FFA1 and FFA4 receptors in the mouse model of cachexia induced by Lewis lung carcinoma (LLC) cell implantation. Naturally occurring ligands such as α-linolenic acid (ALA) and docosahexaenoic acid (DHA), the synthetic FFA1/FFA4 agonists GW9508 and TUG891, or the selective FFA1 GW1100 or FFA4 AH7614 antagonists were tested. FFA1 and FFA4 expression and other cachexia-related parameters were evaluated. GW9508 and TUG891 decreased tumor weight in LLC-bearing mice. Regarding cachexia-related end points, ALA, DHA, and the preferential FFA1 agonist GW9508 rescued body weight loss. Skeletal muscle mass was reestablished by ALA treatment, but this was not reflected in the fiber cross-sectional areas (CSA) measurement. Otherwise, TUG891, GW1100, or AH7614 reduced the muscle fiber CSA. Treatments with ALA, GW9508, GW1100, or AH7614 restored white adipose tissue (WAT) depletion. As for inflammatory outcomes, ALA improved anemia, whereas GW9508 reduced splenomegaly. Concerning behavioral impairments, ALA and GW9508 rescued locomotor activity, whereas ALA improved motor coordination. Additionally, DHA improved grip strength. Notably, GW9508 restored abnormal brain glucose metabolism in different brain regions. The GW9508 treatment increased leptin levels, without altering uncoupling protein-1 downregulation in visceral fat. LLC-cachectic mice displayed FFA1 upregulation in subcutaneous fat, but not in visceral fat or gastrocnemius muscle, whereas FFA4 was unaltered. Overall, the present study shed new light on FFA1 and FFA4 receptors' role in metabolic disorders, indicating FFA1 receptor agonism as a promising strategy in mitigating cancer cachexia.


Body Weight/drug effects , Cachexia/drug therapy , Carcinoma, Lewis Lung/metabolism , Docosahexaenoic Acids/therapeutic use , Receptors, G-Protein-Coupled/metabolism , alpha-Linolenic Acid/therapeutic use , Animals , Benzoates/pharmacology , Biphenyl Compounds/pharmacology , Cachexia/etiology , Cachexia/metabolism , Carcinoma, Lewis Lung/complications , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Methylamines/pharmacology , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Neoplasm Transplantation , Phenylpropionates/pharmacology , Propionates/pharmacology , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Sulfonamides/pharmacology , Xanthenes/pharmacology , alpha-Linolenic Acid/pharmacology
5.
Brain Behav Immun ; 80: 879-888, 2019 08.
Article En | MEDLINE | ID: mdl-31176000

Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.


Astrocytes/metabolism , Leukocytes, Mononuclear/metabolism , Sepsis/physiopathology , Adult , Animals , Brain/metabolism , Central Nervous System/metabolism , Databases, Genetic , Disease Models, Animal , Female , Glutamic Acid/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/physiology , Male , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Wistar , Sepsis/genetics , Signal Transduction/physiology
6.
Brain Res ; 1698: 54-61, 2018 11 01.
Article En | MEDLINE | ID: mdl-29932894

Sepsis is one of the main causes of hospitalization and mortality in Intensive Care Units. One of the first manifestations of sepsis is encephalopathy, reported in up to 70% of patients, being associated with higher mortality and morbidity. The factors that cause sepsis-associated encephalopathy (SAE) are still not well known, and may be multifactorial, as perfusion changes, neuroinflammation, oxidative stress and glycolytic metabolism alterations. Fructose-1,6-bisphosphate (FBP), a metabolite of the glycolytic route, has been reported as neuroprotective agent. The present study used an experimental sepsis model in C57BL/6 mice. We used in vivo brain imaging to evaluate glycolytic metabolism through microPET scans and the radiopharmaceutical 18F-fluoro-2-deoxy-D-glucose (18F-FDG). Brain images were obtained before and 12 h after the induction of sepsis in animals with and without FBP treatment. We also evaluated the treatment effects in the brain oxidative stress by measuring the production of reactive oxygen species (ROS), the activity of catalase (CAT) and glutathione peroxidase (GPx), and the levels of fluorescent marker 2'7'-dichlorofluorescein diacetate (DCF). There was a significant decrease in brain glucose metabolism due to experimental sepsis. A significant protective effect of FBP treatment was observed in the cerebral metabolic outcomes. FBP also modulated the production of ROS, evidenced by reduced CAT activity and lower levels of DCF. Our results suggest that FBP may be a possible candidate in the treatment of SAE.


Fructosediphosphates/pharmacology , Glucose/metabolism , Reactive Oxygen Species/metabolism , Sepsis/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain Diseases/drug therapy , Disease Models, Animal , Fluorodeoxyglucose F18 , Fructose/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Positron Emission Tomography Computed Tomography/methods , Sepsis/drug therapy
7.
Mol Neurobiol ; 55(12): 9307-9327, 2018 Dec.
Article En | MEDLINE | ID: mdl-29667130

Voltage-gated calcium channels (VGCCs) play a critical role in neuroinflammatory diseases, such as multiple sclerosis (MS). CTK 01512-2 is a recombinant version of the peptide Phα1ß derived from the spider Phoneutria nigriventer, which inhibits N-type VGCC/TRPA1-mediated calcium influx. We investigated the effects of this molecule in the mouse model of experimental autoimmune encephalomyelitis (EAE). The effects of CTK 01512-2 were compared to those displayed by ziconotide-a selective N-type VGCC blocker clinically used for chronic pain-and fingolimod-a drug employed for MS treatment. The intrathecal (i.t.) treatment with CTK 01512-2 displayed beneficial effects, by preventing nociception, body weight loss, splenomegaly, MS-like clinical and neurological scores, impaired motor coordination, and memory deficits, with an efficacy comparable to that observed for ziconotide and fingolimod. This molecule displayed a favorable profile on EAE-induced neuroinflammatory changes, including inflammatory infiltrate, demyelination, pro-inflammatory cytokine production, glial activation, and glucose metabolism in the brain and spinal cord. The recovery of spatial memory, besides a reduction of serum leptin levels, allied to central and peripheral elevation of the anti-inflammatory cytokine IL-10, was solely modulated by CTK 01512-2, dosed intrathecally. The intravenous (i.v.) administration of CTK 01512-2 also reduced the EAE-elicited MS-like symptoms, similarly to that seen in animals that received fingolimod orally. Ziconotide lacked any significant effect when dosed by i.v. route. Our results indicate that CTK 01512-2 greatly improved the neuroinflammatory responses in a mouse model of MS, with a higher efficacy when compared to ziconotide, pointing out this molecule as a promising adjuvant for MS management.


Calcium Channel Blockers/therapeutic use , Multiple Sclerosis/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Calcium Channel Blockers/pharmacology , Chemokines/metabolism , Cognition Disorders/drug therapy , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Inflammation/pathology , Inflammation Mediators/metabolism , Injections, Spinal , Mice, Inbred C57BL , Motor Activity/drug effects , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Myelin Sheath/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Nociception/drug effects , Peptide Fragments/metabolism , omega-Conotoxins/pharmacology , omega-Conotoxins/therapeutic use
8.
Mol Neurobiol ; 55(3): 2025-2041, 2018 03.
Article En | MEDLINE | ID: mdl-28271402

This study was performed to evaluate the bilateral effects of focal permanent ischemia (FPI) on glial metabolism in the cerebral cortex. Two and 9 days after FPI induction, we analyze [18F]FDG metabolism by micro-PET, astrocyte morphology and reactivity by immunohistochemistry, cytokines and trophic factors by ELISA, glutamate transporters by RT-PCR, monocarboxylate transporters (MCTs) by western blot, and substrate uptake and oxidation by ex vivo slices model. The FPI was induced surgically by thermocoagulation of the blood in the pial vessels of the motor and sensorimotor cortices in adult (90 days old) male Wistar rats. Neurochemical analyses were performed separately on both ipsilateral and contralateral cortical hemispheres. In both cortical hemispheres, we observed an increase in tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and glutamate transporter 1 (GLT-1) mRNA levels; lactate oxidation; and glutamate uptake and a decrease in brain-derived neurotrophic factor (BDNF) after 2 days of FPI. Nine days after FPI, we observed an increase in TNF-α levels and a decrease in BDNF, GLT-1, and glutamate aspartate transporter (GLAST) mRNA levels in both hemispheres. Additionally, most of the unilateral alterations were found only in the ipsilateral hemisphere and persisted until 9 days post-FPI. They include diminished in vivo glucose uptake and GLAST expression, followed by increased glial fibrillary acidic protein (GFAP) gray values, astrocyte reactivity, and glutamate oxidation. Astrocytes presented signs of long-lasting reactivity, showing a radial morphology. In the intact hemisphere, there was a decrease in MCT2 levels, which did not persist. Our study shows the bilateralism of glial modifications following FPI, highlighting the role of energy metabolism adaptations on brain recovery post-ischemia.


Adaptation, Physiological/physiology , Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Neuroglia/metabolism , Animals , Brain Ischemia/pathology , Cerebral Cortex/pathology , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Male , Neuroglia/pathology , Rats , Rats, Wistar
9.
Rev. bras. hematol. hemoter ; 31(supl.1): 112-119, maio 2009.
Article Pt | LILACS | ID: lil-519666

Epilepsia é uma patologia bastante prevalente no nosso meio. Há um número significativo de pacientes que não obtém resposta com a terapêutica medicamentosa, o que motivou a pesquisa de novas terapêuticas. O conceito de neurogênese no cérebro adulto, hoje já amplamente conhecida, principalmente a que ocorre na zona subventricular e na zona subgranular do giro denteado, motivou o desenvolvimeto de técnicas que aproveitassem esse mecanismo na tentativa de obtenção de efeitos antiepileptogênicos e reparadores. A maior parte dos estudos em vigência hoje, e que buscam tal finalidade, trabalha o uso de transplante de células progenitoras neurais ou de células fetais em modelos experimentais. No entanto, a terapêutica com células-tronco de medula óssea parece bastante interessante e promissora. Em doenças neurológicas nas quais os danos são frequentemente irreversíveis, as estratégias regenerativas podem representar um novo caminho. Em nosso laboratório, temos estudado o potencial terapêutico de células-tronco da medula óssea no controle de crises espontâneas recorrentes associadas ao modelo da pilocarpina com resultados excelentes. Também já está em andamento o primeiro estudo em humanos utilizando células-tronco de medula óssea para o tratatamento da epilepsia.


Epilepsy is a prevalent pathology. A significative number of patients do not achieve an adequate response to pharmacological therapy. This observation has motivated the search for new strategies. The now well known concept of neurogenesis in the adult brain, in particular in the subventricular and dentate gyrus subgranular zones, has encouraged the development of strategies that might control this mechanism in order to obtain either antiepileptogenic or repair effects. Most studies focus on the transplantation of neural progenitor or fetal cells in experimental models, although bone marrow stem cell therapy is promising. In neurological diseases in which damage is frequently irreversible, regenerative strategies could represent a new path towards better treatment options. In our laboratory, we have been studying the therapeutic potential of bone marrow stem cells in controlling recurrent spontaneous seizures associated to the pilocarpine model of epilepsy with excellent results. We are also running the first study using bone marrow stem cell transplantation in the treatment of epilepsy in humans.


Humans , Bone Marrow , Epilepsy , Stem Cells
...